10 research outputs found

    The Lutonium: A Sub-Nanojoule Asynchronous 8051 Microcontroller

    Get PDF
    We describe the Lutonium, an asynchronous 8051 microcontroller designed for low Et/sup 2/. In 0.18 /spl mu/m CMOS, at nominal 1.8 V, we expect a performance of 0.5 nJ per instruction at 200 MIPS. At 0.5 V, we expect 4 MIPS and 40 pJ/instruction, corresponding to 25,000 MIPS/Watt. We describe the structure of a fine-grain pipeline optimized for Et/sup 2/ efficiency, some of the peripherals implementation, and the advantages of an asynchronous implementation of a deep-sleep mechanism

    Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population

    Get PDF
    Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequences and transcription analysis. Here, we investigated the phenotypic nature of several key forms and found a remarkable (interactive) coexistence of forms which highlights the presence of different ecological roles pointing at a dichotomy in: (i) tolerance to environmental stresses and (ii) the capacity to utilize particular carbon sources such as galactose. Both forms differed from their common ancestor by different criteria. This apparent coexistence of two diverged forms points at the occurrence of niche partitioning as a consequence of dichotomous adaptive evolution. Remarkably, the two forms were shown to continue to coexist - in varying ratio's - in an experiment that cycled them through periods of nutrient feast (plentiful growth substrates) and famine (growth-restrictive - stress conditions). The results further indicated that the equilibrium of the coexistence was destroyed when one of the parameters was high tuned, jeopardizing the stability of the coexisting pair

    The physiology of growth arrest: uniting molecular and environmental microbiology

    No full text
    Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives

    Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation

    No full text
    corecore